

Advancements in Continuous Processing of Soft Magnetic Composites

Stephen L. Feldbauer, Ph.D. Abbott Furnace Company

Soft Magnetics

Soft Magnetic Composite

An Insulating Coating

 Most Common Soft Magnetic Composite Coating.... Iron Oxide (Somaloy 3P)

Confidential - Property of Abbott Furnace

Keys to Success

- High Density
- Very Homogeneous Insulating Coating Around the Particles

Soft Magnetic Composite Process

Oxidation of Particle to Form Coating

Soft Magnetic Composite Process

Lubricant Removal is Critical to Success

Soot Breaks the Coating

Soot Compromises the Coating

Confidential - Property of Abbott Furnace

Temperature Window to Avoid Soot

- Optimal Lubricant Removal Temperature Range for EBS: 350°F (175°C) – 1000°F (537°C)
 - Requires Convective Heating for Temperature Control at Low Temperatures
 - Lubricant will soot if exposed to Temperatures above 1000°F

High Density = More Time to DeLube

- Time to Remove the Lubricant is a Strong Function of the Green Density.
- Time to Remove the Lubricant is NOT a LINEAR Relationship with the Green Density.

R. Powell, et. al.

Lubricant Removal Time vs Density

Lubricant Removal Time vs Thickness

New Process - The Nautilus

Process - Flexibility

- Temperature, Atmosphere Flow Rate, and Atmosphere Composition *are Independent variables*.
 - Convective Heating in the Lubricant Removal Zone
 - Atmosphere Flow Rate and Composition Controlled by Independent Injection
 - Independent injection of oxidizing constituents

SMC Materials / Processing

The Somaloy product family

The Somaloy product family includes 3 groups; 1P, 3P and 5P with different performance levels (P):

- Somaloy 1P Baseline
- Somaloy 3P Mechanical strength, permeability
- Somaloy 5P Lowest losses

Somaloy 700HR 800MPa								
				Nautilus				
	Compaction			"DeLube"		"Sintering"		
	Temp.	Pres.	Density	Temp.		Temp.		
Material	(F)	(Psi)	(g/cc)	(F)	Atmopshere	(F)	Atmopshere	
	. ,	· · /			•		•	
1P	70	116030	7.45	< 1000	Air	986	Air	
1P 3P	70 176	116030 116030	7.45 7.52	< 1000 < 1000	Air Air	986 986	Air Steam	
1P 3P 5P	70 176 212	116030 116030 116030	7.45 7.52 7.5	< 1000 < 1000 < 1000	Air Air Nitrogen	986 986 1202	Air Steam Nitrogen	

www.hoganas.com/electromagnetic

New Process – 1P

Electrically Heated with Elements Above and Below the Muffle

New Process – 5P

Electrically Heated with Elements Above and Below the Muffle

New Process – 3P

Electrically Heated with Elements Above and Below the Muffle

Confidential - Property of Abbott Furnace

Processing with Conventional Equipment

Processing with New Process

New Process Savings

- Single Pass Saves
 - 5 days of lost production
 due to temperature
 adjustment
 - 2 to 3 handling steps
 - Potential trucking cost
 - 2 to 3 weeks processing time
 - Atmosphere and Heating
 Cost due to Furnace
 Conditioning
 - Faster Rate Saves 2 Days of Production

to Final Custome

5 Days to Proces 50,000 Parts

New Process Savings!

- The Average Sintering Furnace Produces at a Rate of ~\$2,000.00 / Hour
- 7 Days of Lost Production due to Temperature Adjustment in Conventional Processing
- New Process has the Potential to Save ~\$340,000.00 / Change-Over
 - Does NOT Include:
 - Additional Handling Costs
 - Trucking Costs
 - Out-Sourced Steam Treating Costs or Heating Costs to Re-Heat Parts to Steaming Temperature
 - Lost Atmosphere and Heat Costs associated with Furnace Running Empty during changes

Thank You

