AC motors are the tools of innovation in the ev and green vehicle markets

EV motor

The product development cycle doesn’t always follow a straight line. It starts with research and prototyping stages, followed by small-scale production; however, depending on how proof-of-concept testing and validation play out, a manufacturer may ramp up production or go back to the drawing board multiple times.

Once a final design is selected and mass produced, tweaks and revisions to the original are common.

Alternating current (AC) motor developments are an example of this iterative process. Both the materials they’re made of and the methods for working with those materials are breaking new metallurgical ground. Here’s how.

A Fertile Test Environment for AC Motor Innovations

Researchers and manufacturers looking to test new designs for compact motors and better batteries often turn to small, quickly produced products such as bicycle or scooter motors, appliances, pumps, and other items. This is because they can often be redesigned multiple times and brought to market more readily than cars and trucks.

Some of these proof-of-concept applications include AC motors that power vehicle systems like windshield wipers, automatic seat or mirror adjustors, power windows and locks, and bicycle or scooter motors.

A Changing Design

An AC motor is made of a stator, which is a stationary component, and a rotor, which spins inside the stator and produces torque, which can be used to move things. In a standard motor, the stator is wrapped with a metal coil or thin laminated layers of metal. AC runs through that wrapped material and causes the push/pull motion that makes the rotor spin.

Beginning in the 1980s, soft magnetic composite materials revolutionized DC motor applications. Instead of wrapping coils or laminated material around the stator, the stator itself can be made of powder metal material that creates a magnetic field.

Recent developments in particulate materials have resulted in a powder metal material that is best suited for AC applications. This material, known as soft magnetic composite, is made of ferrosilicon particles mixed with phosphorous and a lubricant to aid in the ejection of the product from the compaction press. The composite is molded into the part shape. Then in a critical step, the lubricant must be removed from the completed part, also called the compact, through heat treatment. Finally, the piece is cured under controlled atmospheric conditions, usually with steam, nitrogen, or oxygen.

The key advantage to using a particulate material like this is that each individual particle acts as an independent layer, contributing to the magnetic field and turning the rotor faster, despite being smaller overall than a traditional stator component.

Optimizing the Furnace to the Process

Of course, this is just one way manufacturers are experimenting with new materials and methods. There are many ways to make smaller, lighter weight, and stronger components for vehicles and other applications. In many cases, one of the biggest barriers to production lies with thermal processing.

In a traditional furnace, it can be difficult to control temperature, processing time, and atmospheric conditions as tightly as necessary for an efficient process.  

At Abbott Furnace Company, we have the expertise and experience to develop industrial furnaces that precisely match process requirements, such as:

  • Specific temperature ranges
  • Regulated belt speeds to control the time spent in each zone
  • Atmospheric control by injecting gas at just the right time for curing
  • Integration with robotic equipment to reduce handling and cycle times
  • Computerized condition monitoring systems to track production and equipment parameters

Please contact us to learn how we can help optimize your thermal treatment processes!

Brazing Symposiums

Celebrating Excellence: The 2024 Abbott Brazing Symposium Recap

A GATHERING OF EXPERTSThe 2024 Abbott Annual Brazing Symposium, taking place May 7-9 in Nashville, brought together some of the world’s foremost experts in the field of brazing furnaces, filler metals, part cleaning, atmosphere gasses and flow controls. Engineers, maintenance personnel, and industry professionals convened in The Music City to explore the latest advancements, share

Read More »
IBSC 2024

2024 IBSC Recap

The 2024 International Brazing and Soldering Conference (IBSC) was held in Charleston, SC on April 14-17. The conference was a huge success, with over 140 attendees from around the world. IBSC included a large variety of brazing and soldering technical presentations covering a wide range of industries from automotive, aerospace, defense, electronics, and the latest

Read More »
Steam Treatment Furnaces

The Fundamentals of Steam Treating Webinar Replay

Abbott Furnace Company’s team of experts discussed THE FUNDAMENTALS OF STEAM TREATING. Abbott Furnace manufactures highly efficient steam treatment furnaces for continuous steam treating. Abbott’s continuous mesh belt steam treatment furnaces provide a viable alternative to batch process methods. The steam treatment process is the controlled oxidation of metals to produce a thin layer of

Read More »
Additive Manufacturing

2024 AMUG Conference recap

Abbott Furnace Company exhibited at the 2024 AMUG Conference held at the Hilton Chicago, March 10-14. The Additive Manufacturing Users Group (AMUG) is an all-encompassing technology users group dedicated to the advancement of additive manufacturing technology with a motto “For Users – By Users.” The AMUGexpo provided a social environment to discuss the latest technology

Read More »

CQI-29 Brazing System Assessment Webinar Replay

Abbott Furnace Company’s CQI-29 Brazing System Assessment Webinar Replay Abbott’s head of Research & Development, Dr. Stephen L. Feldbauer, Ph.D., discusses key aspects of the Brazing System Assessment and answers participants questions. The AIAG CQI-29 Brazing System Assessment specifies process requirements for an organization or its suppliers performing applicable aluminum and stainless-steel brazing. Processes covered

Read More »
Translate »
Scroll to Top